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Abstract |[EN]|

Social media have become a part of peoples’ lives. People use it to express their feelings
and their preferences. It is important for marketers to monitor sentiment around their
brands. While the automatic textual analysis is widely used, some interpretation of shared
images is still at its beginning. Social media are a specific domain because the amount of
shared data huge and they require unique solutions.

We propose a new end-to-end method for image retrieval for logo recognition. We
put emphasis on near perfect precision and short query time. In order to satisfy these
requirements, we use state-of-the-art feature based methods. We use ORB detector,
FREAK descriptor, Multi-probe LSH matching algorithm and RANSAC for verification.
We also introduce our own improvements to the process like fast non-maxima
suppression, mutual keypoint verification among the training images or tests which allow
RANSAC to decline wrong hypotheses before computing their support.

We have implemented functional program which was evaluated on two datasets.
FlickrLogos-32 is the first one and it is a standard dataset for logo recognition. It consist
of 32 logotype classes downloaded from photo sharing service Flickr. The second one is
our dataset of 5 million images downloaded from Twitter. One of our contributions is
making this dataset and providing it for the future research.

Our algorithm works with 100% precision and 47% recall for the Flickr dataset
and with 99% precision and 18% recall for the Twitter dataset.
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Abstrakt [CS]

Socialni media se stala nedilnou soucésti zivota lidi. Lidé je pouzivaji, aby vyjadiili svoje
pocitiy a nazory. Pro merketéry je diilezité, aby zde sledovali povédomi o své znacce.
Zatimco analyza piirozeného jazyka je zde hojné pouzivané, automatickéd interpretace
sdilenych obrazkil se teprve ujima. Socidlni média jsou diky svému obrovskému objemu
dat specificka oblast, ktera vyzaduje nova unikatni reseni.

Navrhujeme novou kompletni metodu pro vyhledavani obrazu a rozpoznavani log.
Kladli jsme daraz na vysokou presnost algoritmu a na jeho rychlost. Abychom toho
dosahli, pouzili jsme nejmoderné&jsi metody. Pouzili jsme ORB detektor, FREAK
deskriptor, vyhledavaci algoritmus Multi-probe LSH a RANSAC pro finalni verifikaci.
Mimo to jsme také predstavili vlastni vylepSeni vyhleddvactho procesu — rychlou metodu
pro lepsi distribuci bodi zajmu v obrazku, vzajemné verifikace a filtrace boda zajmu mezi
trénovacimi daty nebo série testi, které odhalli nékteré Spatné hypotézy prostorové
transformace aniz by se musela pocitat jejich plna podpora.

Algoritmus jsme tispésné naimplementovali a vyhodnotili ho na dvou datasetech.
Prvni se nazyvé FlickrLogos-32 a je to standardni dataset pro rozpoznavéani log. Sklada
se z 32 tiid log stazenych ze sluzby Flickr. Druhy dataset obsahuje 5 milionti obrazi ze
socidlni sité Twitter. Jeden z naSich piinost je pravé vytvoreni tohoto datasetu a
poskytnuti ho k dalsimu vyzkumu.

N&s algoritmus dokézal na datech z Flickru nalézt 47% skutec¢nych log bez falesné
detekce. Pro data z Twitteru nasel 18% vyskytujicich se log s 1% nespravné oznacenych

obrazku.
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1 Introduction

Social media are becoming more and more significant. In 2014, two thirds of the global
internet population are actively using some kind of social network [1]. Facebook' alone,
the world’s biggest social network, has 1.28 billion monthly active users [2].

The amount of data transferred and stored by the social media is growing rapidly.
While Facebook stores 250 billion photos and another 350 million photos are uploaded
every day [3], users of the photo messaging application Snapchat® send up to 700 million
photos per day [4]. Instagram® is a smaller, yet still widely popular photo-sharing social
network recently acquired by Facebook. Its users post 70 million photos daily [5]. All
these images are also often linked to an extensive amount of metadata about users’

personal information, networking and settings.

Access to all this data creates a huge opportunity for the marketers. It has been
estimated that social media advertising revenue will reach $15 billion by the year 2018
[6]. The marketers are able to target their campaigns to the right audience as well as to
effectively connect with their customers. It allows them to run thousands of versions of
their campaigns, each tailored for a very specific demographic group, and to adjust them
as they get immediate feedback. That is why the comprehensive analysis of the data from
social media is so crucial.

While analysis of users’ networking and behaviour and of the textual part of the
users’ posts are exploited by many social media management tools, an automatic
interpretation of images is still not widely integrated, which is the motivation for
development of methods proposed in this thesis. A highly desired service in this context
is certainly to detect products and logos of the companies so they would be able to
measure the effects of their campaigns as well as to track the sentiment around their
brands.

There has been a recent increase in startup companies which aim to detect and
monitor brands’ logos in images on social networks. Gaze Metrix [7], Phashtag [8], LTU
Technologies [9] or $3.6 million funded [10] Ditto Labs [11]to name a few. Unfortunately,
none of these companies gives out any technical information about its solution or

performance statistics.

We are interested in developing a method which would be able to monitor objects
of interest in images in order to measure users’ engagement on social networks. We have
chosen Twitter! as our social network of choice in order to evaluate the performance of
our method since images from Facebook and Snapchat are hard or even impossible to

L http://www.facebook.com
2 http:/ /www.snapchat.com
* http:/ /www.instagram.com,

* http:/ /www.twitter.com



1 Introduction

obtain due to the privacy policies of these services. The exact number of images shared
on Twitter is not public. Twitter only states that 500 million tweets are sent daily [12]
which enables us to make a rough estimate of tens of millions of shared images per day.
However, not all the images must be processed. At least one quarter of the posts on
Twitter are duplicates [13], so called retweets, and this ratio is even much higher for posts
with photos [14]. Also, some users might not have a sufficient audience or they might not
come from monitored geographical regions.

This determines the requirements on the system. While there are no time
constraints on the offline stage, the recognition itself must be done on the fly since the
data stream is constant. Even with described pre-filtering of irrelevant images taken into
account, the system must be able to process millions images per day which equals to
dozens of images per second. The time of the recognition also must not be worse than
linearly dependent on the number of detected classes.

Due to the enormous number of queries and the estimate that the a priori
probability that an image contains the desired class is between 10° and 10™, another
requirement is that the false positive rate (number of false positives divided by number
of all negatives) should be close to zero, otherwise the false positives would heavily
outnumber the true positives among the results. Since the actual a priori probability is
unknown and thus it cannot be simulated in the experiments, the requirement for this
work is to have zero false positive rate, i.e. to have the perfect precision. This setting
certainly decreases the recall however perfect recall is not essential for this application
since we are rather interested in overall changes in the statistics.

This thesis proposes an end-to-end solution for the object detection based on the
state-of-the-art methods. To meet the requirements mentioned above, it uses FAST
corner detector [15, 16] with rotation estimation proposed in [17], binary FREAK
descriptor [18], multi-probe locality sensitive hashing [19] for matching the features and
RANSAC for the geometrical verification. It also introduces a cascade of various tests
and filters which reject most of the unpromising images before they advance to further
parts of the algorithm.

The experiments will be done on two datasets. The first dataset contains 2240
labelled images of 32 classes and 6000 general images, all downloaded from the photo
sharing service Flickr®, provided by the Multimedia Computing and Computer Vision
Lab, Augsburg University’. The second one consists of 5 million images which were
attached to Twitter posts which contained some of the selected keywords.

The rest of the thesis is structured as follows. State-of-the-art methods for fast
object recognition and image retrieval are reviewed in Chapter 2. In Chapter 3, suitability
and performance of these methods is discussed with respect to the requirements. A new
end-to-end algorithm for detection of objects of interest in large dynamic sets of data is
proposed. Used datasets are described in Chapter 4. Performance of the algorithm is

® http:/ /www.flickr.com
b http://www.multimedia-computing.de/flickrlogos /
2



1 Introduction

evaluated by a series of experiments on real data in Chapter 5. Suitability of the proposed
algorithm for real life applications is summarized in Chapter 6 as well as further
improvements are suggested.
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2 State of the Art

In this chapter, we review currently used methods for image retrieval and their suitability
for the application of object detection in the social media domain will be discussed.

There are several approaches how to solve an image retrieval task. Detection and
description of local features is almost always the substance. Feature based methods are
widely used in many computer vision applications. It would be generally a hard task to
look for correspondences in images by trying to naively align them and then compare the
differences in pixel intensities. The viewpoint may change, there might be different
illumination conditions, different levels of noise in the image and/or occlusions may
appear. The best practise is to find local highly descriptive regions (features), describe
them in some manner which is invariant to slight changes caused by geometrical
transformation, illumination changes, noise, etc., and look for correspondences in some
space of these features.

Even though there are certainly computer vision applications where the colour
information is essential, most of the algorithms, where the feature matching is involved,
use the grayscale images even if the 3-channel colour images are available. The extra
information about the colour does not usually compensate for the substantial slowdown
of processing three channels instead of one. The grayscale pixel intensities are obtained
by simply averaging out the colour channels.

Comparing or efficient storing of local features directly would not be possible for
larger databases, therefore some kind of abstraction must be used.

Jégou et al. [20] developed a way to aggregate local descriptors into a compact
image representation called VLAD. A single fixed-size vector represents the whole image.
It is obtained by assigning d-bit-long descriptors of local features to previously computed
k centroids. Summing the descriptors per each centroid results in k vectors which together
create k * d-bits-long image decsriptor. Search and indexing are reduced to distance
approximation problem. This method works well even for databases of tens or hundereds
of million of images, however it is rather designed to search for simillar scenes. The objects
of interes we search for can be found in very different scenes with different scales and
orientations. Therefore VLAD and other approaches which generalize an image to a single
descriptor cannot be used.

Bag of words is another widely used algorithm for the image retrieval. It quantizes
feature descriptors of an image to so called visual words. The image is then represented
by a sparse vector of occurances of these visual words. The algorithm is decribed in more
detail in Chapter 2.3.1, however it was outperformed by bundle min-hashing for the

purposes of logo detection.

To the best of our knowledge, Romberg and Lienhart [21] has achieved the best
results in logo recognition so far. They use bundle min-hashing to obtain a shortlist of
candidate matching images from the database. Bundle min-hashing is further described
in Chapter 2.3.3.



2 State of the Art

Based on the state-of-the-art method of bundle min-hashing, we have decided to
use feature based methods and image indexing to retrieve a shortlist of possible candidate
solutions from the database. We have also chosen to use spatial verification to re-rank
the shortlist. Unlike the bundle min-hashing, we focus on very fast keypoint detection
and description as well as the overall retrieval time.

2.1 Feature Detectors

Representing an image by a set of local features allows algorithms to be robust to
occlusions. Local futures are detected as regions of pixels in the image rather than only
single pixels/points which would not be very descriptive. Local features, interest points,
keypoints, distinguished regions or patches are different terms which appear in the

literature but usually denote the same thing.

Forstner [22] formulated basic requirements which a good feature detector should
fulfil:

= Distinctness — The points should be distinct from their neighbourhood.

»  JInvariance — The selection and the positions of the points should be invariant to
geometric transformations and illumination changes

= Stability — The selection should be robust to noise

=  Seldomness — Elements of repetitive patterns should not be selected or at least
get lower weight

= Interpretability — The selection principle should be interpretable in some sense,

e.g. looking for edges, corners or blobs

Commonly used modern detectors meet these requirement up to some level. There
might be a trade-off between robustness and speed of the algorithm but there are usually
even more aspects which must be taken into account with respect to the application.
Some detectors can provide sub-pixel precision or estimate rotation or affine
transformation. Some detectors are more suitable for stereo vision, some perform better
at object tracking. And some are even three orders of magnitude faster than others.

There is simply not one single detector which would outperform the other ones
and defining requirements for the descriptor must be a part of the design of a recognition
system.

2.1.1 Harris descriptor
Moravec [15] proposed a measure for local change E in direction (u, v)

E(u,v) =Zw(x,y)[l(X+u,y+V) — 1 (2.1)
X,y
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where w(x,y) is a window function and I(x,y) is the intensity of the pixel in the y-th
row and the x-th column of the image I. Then, a point is considered as a corner if the
change E is large in all directions.

® “Corner”
Ay and A, are large,
7”1 ~ 7‘-25
F increases in all
directions

Ay

Figure 2.1 The space of eigenvalues of the matrix M and interpretation of their values. [16]

Harris and Stephens [23] used 2™ order Taylor expansion to approximate this
equation and reformulated the change measure to

E(u,v) = [u,v]M [ﬁ] (2.2)

where M is the structure tensor

2 LI
M= Z w(x,y) II | Izyl 23)

where I, is the image derivative in the x direction.

They then observed that they can use the eigenvalues 14,4, of the matrix M to
do the analysis of the intensity change in the shifting window. The eigenvalues define the
directions and magnitude of the fastest and the slowest changes.

If the eigenvalues are both small, it means E is almost constant in all directions
which corresponds to a flat region. If only one of the eigenvalues is large, it corresponds
to an edge. And if the eigenvalues are both large, E increases in all directions which
corresponds to a corner (see Figure 2.1).

The exact computation of the eigenvalues would be computationally too
expensive. However, they realized that
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det(M) = 1,4, (2.4)
and
trace(M) = 2, + A, (2.5)
so they introduced a measure of corner response
R = det(M) — k(trace(M))? (2.6)

where k is an empirical constant 0.04. The large values of R correspond to the large
eigenvalues of M. Corners are the local maxima of this function.

Harris detector is invariant to rotation and intensity shift since only the
derivatives are used, however it is not invariant to the changes in intensity scale and
image scale. The scale invariance was solved by Mikolajczyk and Schmid [24] who
developed the Harris-Laplace detector as well as the Harris-Affine detector, an affine
invariant detector.

Figure 2.2 Images of the scale space pyramid for DoG. Images blurred with different
Gaussian kernels (up) and their differences (down). [52]
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2.1.2 Difference of Gaussians

The Difference of Gaussians (DoG) [25] is another widely used way to find local features.
It approximates the Laplacian with the difference of images smoothed by different
Gaussian convolution masks.

The image is smoothed by the Gaussian kernels of different sizes. This is done for
every octave of the multi-scale pyramid. The blob and edge responses are obtained by
subtracting the blurred images within the same octave (see Figure 2.2). Then, eigenvalues
of the Hessian matrices of the local maxima are evaluated and only the strongest ones
over space and scales are kept. These points correspond to the corners in the image.

2.1.3 SUSAN

Smith and Brady [26] introduced a corner detector which uses a morphological approach
rather than computing the local gradients. SUSAN stands for Smallest Univalue Segment
Assimilating Nucleus. It looks at the circular neighbourhood of each pixel and compares
its intensity values to the centre pixel, the nucleus. If the difference between the intensity
value of a neighbouring pixel and the intensity value of the nucleus is smaller than a
given threshold, it belongs to so called USAN. The idea is that USAN will fill up most of
the neighbourhood in homogenous and non-descriptive areas. And vice versa,
neighbourhoods of corners should not contain a lot of pixels which belong to USAN. The

local features are then the local minima of the USAN measure.

Larger weights were assigned to the pixels closer to the nucleus to make the
algorithm more robust. Also, a series of rules is introduced to eliminate the less promising
points before computing the whole USAN.

2.1.4FAST

Rosten and Drummond [15, 16] improved the SUSAN detector by not comparing the
centre pixel with all the pixels in the neighbourhood but only with pixels on a fixed circle
around the centre. Bresenham’s circle’ of radius 3 with 16 pixels on the perimeter was
used. A region can be a corner feature only if there is at least n contiguous pixels which

are all either brighter or all darker by the threshold t than the centre pixel.

This procedure does not compute any information about the corner response of
the region and FAST (Features from accelerated segment test) actually returns much
more keypoints than other descriptors. To be able to perform the non-maxima
suppression, authors introduce a fast score function V given by

Vemax| Y Ip-on-I@I-t, ) e -0-1@)] -t (2.7)

XESpright XESgqark

" Bresenham’s circle algorithm is a method in computer graphics of how to select pixels in order
to draw a circle in a pixel raster



2 State of the Art
with
Sbright ={x|I(p->x) =1(p) +t} (2~8)

Saark = x|1(p - x) < I(p) — t} (2.9)

where x € {1..16} corresponds to the location on the circle around the centre pixel p (see
Figure 2.3), so p = x denotes a pixel at that relative position to p and I(p — x) is the
intensity value of that pixel.

FiEEEeEEEn

]
SEEEEEEEE
EEEEEENT

Figure 2.3 Corner point detected by FAST. Only the 16 highlichted pixels are involved
in the detection. The dashed line indicates an arc which passes through 12 contiguous pixels
which are all brighter than the centre point p by more than threshold ¢. [10]

There is no need for evaluating all the pixels on the perimeter. In fact, some
regions can be already rejected after first two comparisons. A big decision tree was trained
by the ID3 algorithm [27] to determine in which order the pixels should be checked. This
results in an optimization where only 3.8 pixels need to be checked on average. The FAST
detector is up to 30 times faster than DoG according to [28].

FAST is certainly one of the fastest known detectors however it is not scale
invariant which makes it inapplicable for some more complex applications.

2.1.50RB

ORB (Oriented FAST and Rotated BRIEF) [17] is a detector and descriptor algorithm
which improved and combined two know solutions, FAST and BRIEF [29].

FAST is not scale invariant so a multi-scale Gaussian pyramid was used to achieve
this property. ORB computes more time consuming Harris score instead of the fast score
function used by FAST. However, since the score is calculated only for the preselected
corner points, it is still orders of magnitude faster than the Harris detector.

FAST also does not compute the orientation of features since it was originally
developed for tracking in videos where this information was not necessary. ORB uses a

10
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simple way to determine the orientation proposed in [30]. It defines the moments of a
patch as

Mpq = Z xPyal(x,y) (2.10)

x,y

and the intensity centroid

My M
C = (iﬁ) (2.11)
Mpp Moo

Orientation of a patch is then the direction of vector PC going from centre of the patch
P to the intensity centroid C. It can be computed as

0 = atan2(mgy,, M) (2.12)

where atan2 is a quadrant-aware version of arctan. The original paper [30] distinguishes
orientation for patches with bright or dark background, but the authors of ORB use the
same measure for all patches since it is consistent regardless of the corner type.

The orientation measure may become unstable when |P—C)| is too small, however
the authors claim it rarely happens for FAST corners. They even showed that using the
intensity centroid performed much better for noisy images than using the histogram of
gradient directions, another popular way to determine patch orientation, used for example
by SIFT 31, 32|.

2.2 Feature Descriptors

Comparing pixel intensities within the patches directly would be time inefficient and
would not be robust to noise and spatial and illumination transformations. The best
practise is to obtain invariant descriptors, vectors of either real numbers or bits, and
compare the keypoints in a space of these descriptors.

Descriptors use various image properties such as histograms of gradients, intensity
differences, analysis of the Fourier power spectrum and so on.

2.2.1SIFT

David Lowe [31, 32] presented a complete algorithm for detection, description, indexing,
matching and verification of the local features. His solution became widely popular and
his articles are one of the most cited works in the computer vision community.

11
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Several new ideas were introduced. The features were detected as the local
extrema of the differences of Gaussians in the scale-space pyramid. Sub-pixel and sub-
scale precision was achieved by interpolating the neighbourhood of a pixel over all three
dimensions in the scale space. The orientations of the keypoints were determined by the
modes of gradient orientation within the local region.
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Image gradients Keypoint descriptor

Figure 2.4 SIFT descriptor. Gradient magnitudes and orientations are first computed for
each point in the patch (left) and then weighted by a Gaussian window, indicated by the blue
circle. These values are then accumulated into orientation histograms for each 4x4 subregion
(right). The arrows indicate the sums of the gradient magnitudes of particular orientations.
This figure is only a simplified scheme because it shows 8x8 lattice, whereas SIFT descriptor
is constructed from 16x16 lattice. [25]

Then, the region was divided into 4x4 lattice and the gradients were quantized
with into 8 histogram bins within each cell. 128-element-long SIFT descriptor was
constructed from these histograms.

Lowe also proposed indexing of the features by a modified k-d tree using the best-
bin-first search method. To match features between two images, the closest and the
second closest pairs were retrieved for each feature. If the ratio between the Euclidean
distances of these pairs was larger than a certain threshold, the closest pair was considered
as a good match. Further spatial verification of tentative matches was done by the Hough
transform.

SIFT descriptor was later improved by SURF [33] which is one order of magnitude
faster. Both SIFT and SURF are non-commercial and a licence must be obtained for any
commercial applications.

2.2.2 BRISK

BRISK (Binary Robust Invariant Scalable Keypoints) [34] represents one of the binary
descriptors. To obtain the keypoints, it uses FAST detector across the scale space.
Afterwards it performs non-maxima suppression according to the score s which is defined
as a maximum threshold ¢ for which an image point remains a FAST corner. Furthermore,
it refines positions and scales of keypoints by interpolating positions of corresponding

12
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keypoints across the scale octaves. It achieves sub-pixel and sub-scale precision by this
refinement.

BRISK uses pairs of pixels from a sampling pattern for the description. There are
N = 60 points evenly distributed on concentric circles around the centre pixel (see Figure
2.5). Pixel intensities are smoothed with Gaussian blur proportionally to the separation
of points on each concentric circle, so the outer points are smoothed with the largest
kernel. Notice there is no overlap between the regions thus there are no aliasing effects.
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Figure 2.5 BRISK sampling pattern. Blue circles depict the sampling locations while red
dashed circles correspond to the standard deviations of Gaussian kernels. [27]

The size of a set of all possible pairs of such points is N(N —1)/2 = 1770. The
authors divide this set into three subsets according to the distances of these pairs. Set §
of the short-distance pairings, set £ of the long-distance pairings and the rest belongs to
the set of unused pairings which are neither long nor short.

Keypoint orientation is computed as a weighted sum of gradients of all pairs from
the set L. The keypoint is rotated accordingly and the descriptor is constructed by
comparing the intensities of paired points from the set S. § contains 512 pairs and each
pair corresponds to one bit which results in a 512-bit-long feature vector.
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The advantage of bit-string feature vectors is that the distances between them
can be computed really fast. The Hamming distance is obtained using bitwise XOR
followed by adding up 512 bits afterwards. This procedure may be even speeded up thanks
to the modern architectures of processors and their instruction sets.

Figure 2.6 Human retina and FREAK sampling pattern. Density of ganglion cells over
the retina (left) clustered into four areas: (a) foveola, (b) fovea, (c¢) parafoveal and (d)
parifoveal (middle) and sampling pattern used by FREAK mimicking these areas (right). Red
circles correspond to the sizes of Gaussian kernels used for smoothing. [13]

2.2.3 FREAK

FREAK (Fast Retina Keypoint) [18] is a binary descriptor whose sampling pattern was
inspired by the human visual system, more specifically by the density of ganglion cells
over the retina (see Figure 2.6). Alahi et al. studied biological pathways leading to the
action potentials in the nervous system. They emulated this system by a series of binary
tests over the pairs of pixel regions.

Unlike the BRISK sampling pattern, sampling points are the densest in the middle
of the patch and the density drops exponentially towards the edges. Also, sampled regions
overlap each other. The intensity values are smoothed by Gaussian kernels of sizes

proportional to their local density.

The way to estimate the orientation of keypoints is very similar to BRISK,
however FREAK uses only 45 preselected pairs (see Figure 2.7) opposed to the few
hundreds pairs of BRISK. Let O be the set of these 45 pairs. The orientation 6 is then
computed as

6 =% Z (I(Pi)—I(Pj))ﬁ

(pipjeo

(2.13)

where p is a vector of the spatial coordinates of a centre of a particular receptive field.

The construction of a descriptor is again very similar to BRISK. Let D be the
descriptor vector, P the set of pairs of receptive fields and N its size. Then
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D = Z 2°T (pi" pj) (2.14)
0<asN
where
: a a
T(p¢, p? ={1 if1(pf) > 1(pf) (2.15)
0 otherwise

and where (p{, p}‘.‘) is the a-th pair from the set P.

The pairs were not selected according to their spatial distance between the
receptive fields because this way some of the pairs may be correlated and thus not
sufficiently descriptive. A better way to select the most descriptive pairs is to use training
data, compute T(pi,p j) for all pairs, select a pair with the highest variance and
iteratively add pairs which have both high variance and low correlation with the already
selected points. The authors used a dataset of fifty thousand keypoints to select 512 pairs.

Figure 2.7 FREAK pattern pairs. Orientation pattern pairs (left), 128 pattern pairs of
the coarsest cascade (middle) and 128 pattern pairs of the finest cascade (right). [13]

Interestingly, there is a structure in the selected pairs. A coarse-to-fine ordering
was automatically achieved. Bits are divided into 16-byte-long cascades which might be
used for matching consecutively. The authors observed that 90% of candidate matches
were discarded with the first 16 bytes of the descriptor. Remaining tentative
correspondences may be further refined with the finer cascades. The choice of 16 bytes
per cascade is there to match the hardware requirements as the authors note that the
time to compare 1 or 16 bytes is almost equivalent with Single Instruction and Multiple
Data (SIMD) instructions on Intel processors since operations are performed in parallel.

Comparison of properties of mentioned binary descriptors is shown in Table 2.1.
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Sampling pattern Orientation Sampling pairs
BRISK Concentric circles with Comparing gradients of  Using only short
more points on outer rings.  long pairs. pairs.
FREAK  Overlapping concentric Comparing gradients of  Learned pairs.

circles with more points on  preselected 45 pairs.
inner rings.

Table 2.1 Comparison of BRISK and FREAK descriptors. [53]

2.3 Feature based image retrieval

Euclidean distance for float feature vectors and Hamming distance for bit feature vectors
are the usual measures of distance for descriptors. However, the time complexity of finding
the nearest neighbours of n d-element-long descriptors in a database of m points is
O(nmd), which is too slow even for mid-sized databases. Luckily, there are other faster

ways to obtain tentative correspondences.

2.3.1 Bag of Words

Bag of words (BoW) is a simplifying model for matching documents commonly used in
natural language processing. It represents a document as a multiset (bag) of words
disregarding grammar or word order. The multisets may be also understood as histograms
of words. The comparisons of the documents are then done as weighted intersections of
these multisets. There are several different approaches to weight the elements to obtain
the best results.

ryvvvvvvy reaaOoao U oo
vrvvv vy rv g OOOOORNON
habdbdbb /AL D[S SR NIN IR
i

‘iﬂ'ii‘iﬂi)’iﬂi}’i’ PEFE

i i i i
PEPEPEPEPEPEPEPEPE
(d)

Figure 2.8 Samples of normalized regions which belong to the same visual words. [2§]

Sivic and Zisserman [35] used analogous approach in the image retrieval domain.
The application was to query with an image of an object and find all video frames
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containing this object. Each frame was used like a single document and the descriptors
of the image analogically corresponded to the words in the document.

First of all, descriptors from the training set were quantized into the visual words
which is analogous to stemming®. The descriptors were clustered into k groups using the
K-means algorithm. Each cluster centre represented one visual word and every descriptor
was assigned to its nearest cluster centre. Examples of local features which belong to the
same cluster centre can be seen in Figure 2.8.

Then, an inverted file was constructed. Inverted file is a structure which holds a
list of images in which each visual word appeared together with a number of its
occurrences. This structure can be easily represented as a sparse matrix where the rows
are the indices of visual words and the columns correspond to the images in the database.
Elements of this matrix are sums of occurrences of the visual words in the particular

images.

At the query time, the descriptors are obtained, assigned to the visual words and
a sparse vector is constructed. The similarity measure is defined as normalized scalar
product (cosine of angle) of the sparse vectors

VgVq
./v;vqw/v;vd.

This can be obtained by simply multiplying the sparse vector and the inverted file matrix

score(v,, v4) = (2.16)

under the assumption that both are already pre-normalized.

Analogously to the textual case, some words are more descriptive and some hold
no information at all. That is why a stop list was used and the most 5% and the least 5%
occurred words were eliminated. Furthermore, tf-idf weights were used. Tf (term
frequency) says how often a term occurs in a document. It is supposed to decrease weights
of long documents. It is defined as
ni‘j

tf;; =
2y (2.17)

where n; ; is frequency of a term t; in a document d;. Idf (inverse document frequency)
says how often a word occurs in the whole database and it upweights the less frequent
and thus more descriptive terms. It is defined as

(2.18)

where |D| is size of the database, i.e. number of documents.

 Stemming is a process of reducing inflected words to their stems or root forms used in linguistic
morphology.
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Images with the best score are selected as candidates. The advantage of this
approach is that the tentative correspondences of keypoints are already specified
according to the visual words and no further matching is needed. Some of the
disadvantages are that the images with repetitive structures get substantially higher
scores and that assigning of descriptors to visual words may take long time for large
vocabularies. The problem of repetitive structures was worked out among others by [36]
and more efficient ways how to assign the visual words were proposed in |37, 38|.

2.3.2 Multi-Probe Locality Sensitive Hashing

Locality sensitive hashing (LSH) is a method for probabilistic dimensionality reduction
also often used for approximate nearest neighbour search in high-dimensional data.
Approximate nearest neighbour means that the retrieved point is not guaranteed to be
the actual nearest one, however the speedup over linear search is often enormous and the
results are usually sufficient for real-world applications. The key idea of locality sensitive
hashing first introduced in [39] is that hashes of close object will more likely collide than
hashes of objects which are far from each other. So unlike the cryptographic hash
functions, collisions of hashes of close objects are here a desired property. More formally,
let S be the domain of objects and D the distance measure. Locality sensitive hash family
H ={h:S - U} is (dq,dy, p1, p2)-sensitive for D if for any p,q € §

if D(p,q) < dy,then P[h(p) = h(q)] = p, (2.19)

if D(p,q) > d,, then P[h(p) = h(q)] < p, (2.20)

where dy <d, and p; > p,. There are different LSH families for different distance
measures. Performance of a hashing method is highly dependent in the quality of the
hashing functions they use. Families for Jaccard similarity, Hamming distance and [; and

I, norms were shown in [39]. Here, each hash function is defined as

a-q+b

m (2.21)

hap(q) = l

where a is a d-dimensional random vector and b is a real number uniformly chosen from
the range [0, W].

We can define a family of m-bit hash functions G = {h : § » U™} where g(p) =
[h1(p), hy (D), ..., hyy(P)] and where each h; is randomly chosen from . Probability of
collision P[g(p) = g(q)] decreased to p,™ for far objects. However it also decreased to
p1™ for close objects. That is the reason why there are used [ hash functions g4, ...,g; € G
to construct indexing data structure. Each hash table is created using one function g;.

A retrieval scheme is straightforward then. For query object q construct hash
vectors g1(q),92(q), ..., 91(q), find colliding objects in appropriate hash tables and
corresponding hash buckets, compute distances of these candidates and find the closest k
ones among them.
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This approach certainly decreases the number of distances which need to be
computed, however it still requires up to hundreds of hash tables to cover most of the
neighbouring data points [19]. The size of hash tables is proportional to the size of the
database and memory requirements may exceed the main memory size which causes
substantial slowdown. This issue was partially solved by the entropy-based LSH [40].
Suppose the distance of a query q and its nearest neighbour p is R,. Every hash bucket
has a certain probability it contains p so it would make sense to probe the hash buckets
with the highest probabilities. However, obtaining this probabilities is cumbersome.
Entropy-based LSH rather creates random points qy, ..., q;" at distance Ry, computes their
hashes and adds points retrieved by them to the candidate list. The drawbacks of these
approach are that much more hash values need to be computed and there is high
probability that the hashes will collide so a lot of the computation is wasteful. Also, the
number of newly generated points qy, ..., q;" and the distance R, need to be estimated and
these values have significant influence on the quality of the results. Entropy-based LSH
is 2 to 3 times more space efficient then basic LSH but the query time may increase up
to two times [19].

Multi-probe LSH [19] was designed to decrease both the memory demands and
the query time. The idea is that if an object p is close to the query g but it is not hashed
into the same hash bucket, the hash is likely to be similar, i.e. the distance
Dyl(g(p), 9(q))] will be small. In order to probe buckets with the highest success
probability multi-probe LSH constructs a hash perturbation vector A= (84, ...8,;,). The
perturbation vector extends the selection of hash buckets in a following manner: when a
hash bucket g(q) = [h1(q), h5(q), ..., by (q)] is probed, the hash bucket g(q) + A is probed
as well (see Figure 2.9).

q probing sequence:
(A4, Az, Ag, Ay, ...)

N

91(q)+A
> o)
91(q)
> gi(q)+As
2 gu(q)+As
> gi9)
> 9i(Q)+Aq
[0 s == Qi mmeemeeeeee- aL

Figure 2.9 Multi-probe LSH search. Green buckets are probed by basic LSH. Multi-probe
LSH uses perturbation vectors to probe even the neighbouring buckets (violet). [14]
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To probe only the closest neighbouring hash buckets, the elements of perturbation
vector A are limited in a range §; € {—1,0,1}. Since the perturbation vectors are added
directly to the hash values, there is no need to compute the point perturbations and their
hash values like it is done by the entropy-based LSH. Also, the perturbation vectors map
to unique hash values so no hash bucket is probed more than once.

e

x(-1) | x(1)
| ——o— |
N i@
Y Y Y
hi(q)-1 hi(q) hi(q)+1

Figure 2.10 Probability of falling into the neighbouring slots for the nearest neighbours of
point q. [14]

An n-step perturbation vector A has exactly n non-zero elements. The total
number of possible n-step buckets is [ X (r::) x 2™, Probing all of these buckets would be
impractical. Also, not all these buckets are equally good. Multi-probe LSH uses the
information about the position of h;(q) within the slot of width W to determine the
buckets with the highest success probability. Let x;(8;) be the distance from a point
fi(@Q) = a; - q + b; to the border of the slot of h;(q) in the §; direction (see Figure 2.10).

The most promising perturbation vectors are then selected according to the score function

m

score(A) = Z x;(8)°%. (2.22)

i=1

Multi-probe LSH reduces the number of hash tables by a factor of 14 to 18 over
the basic LSH and by a factor of 5 to 8 over the entropy-based LSH. It also performs 10
times less probes than entropy-based LSH which makes it more time efficient.

Multi-probe LSH is a general method for approximate nearest neighbour search
and so it can be used for the image retrieval task by finding correspondent features from
the database for every feature in the query image. A shortlist of possible results can be
constructed according to these correspondences. While this might be sufficient for some
applications, more complex ones will require further verification of the correspondences
and some kind of re-ranking.

2.3.3 Bundle Min-Hashing

Bundle min-hashing is a method for image retrieval proposed by Romberg and Lienhart
[21]. Tt detects SIFT features and it describes neighbourhood of each keypoint by a feature

20



2 State of the Art

bundle b of its neighbouring keypoints on similar scales (see Figure 2.11). The features
are quantized to visual words just like for the bag of words. Features within the bundles
are indexed by min-hashing.

central
visual word sketches

b$ng @ min-&a;hing ( @: @)

set of neighbors

{olo)o); (O.®)

Figure 2.11 Bundle min-hashing. The neighbourhood of a local feature (red) is described
by its neighbouring features which are on the similar scales (blue). These features are
quantized to visual words and the neighbours are min-hashed to form the sketches. [20]

Min-hashing is a locality-sensitive hashing technique used for approximate
similarity search of sparse sets. Two images may be represented by sets of their visual
words I; and I,. Min-hashing approximates the Jaccard similarity which measures overlap
of such sets as

|1, N 1]

—_— (2.23)
|I; U L]

](11112) =

Given set of n visual words I ={vy,..,v,} and a hash function h which
deterministically maps each visual word to a random value from a uniform distribution,

the min-hash function mh is defined as

mh(l) = argmin h(v,). (2.24)

V;€El

The probability that a min-hash function has the same value for two sets is the same as
their overlap. More formally

|1, NI

—_— (2.25)
|1, U L]

P(mh([l) = mh,(lz)) =](111 12) =

Many different min-hash functions must be used since only one single min-hash
function would not be descriptive enough. Using more min-hash function results in more
false positives. Min-hashes are often coupled to k s-tuples called sketches to improve
precision of the retrieval. Sketches collide only if all their min-hashes agree. Probability
of a successful retrieval is then

P{retrieval} =1 — (1 —J(I;,1,)%)*. (2.26)

Bundle min-hashing uses different sketches. Let b(x;) be the feature bundle of a
feature x;. Formally
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b(xl-) = {lex]' € N(xl)} (2.27)

where N(x;) is a set of neighbouring features. A sketch for a given min-hashing function

1S

(vi, mh (W(b(xl-)))) (2.28)

where v; is the visual word label of feature x; and W is a function which maps the set of
features b(x;) to a set of appropriate visual word labels.

Collisions of such sketches determine the set of possible corresponding images.
Authors observed very small response ratio compared to the bag of words method, e.g.
the precision of retrieval is much higher and mostly relevant correspondences are
retrieved. This reduces the time needed for re-ranking of the tentative correspondences.
Authors furthermore propose a method for fast re-ranking 1P-WGC-RANSAC which uses
retrieved correspondences of sketches to estimate the spatial transformations between
images. Each correspondence has its associated scale and orientation which are used to
determine a similarity transformation. All of these transformations are then evaluated.
Their spatial consistency with the rest of the correspondences determines their support.
Features which are not consistent with the most supported hypothesis are filtered out.
Retrieved images are re-ranked by the number of verified correspondences at the end.

Figure 2.12 Geometrical verification. Upper row: There might be a lot of false matches
among the tentative correspondences (green); Lower row: Geometrical verification filters out
inconsistent outliers. [57]
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2.4 Geometrical Verification

Nearest neighbour algorithms may return a lot of tentative correspondences and even
though distances of descriptors may be small and keypoints match locally, they don’t
necessarily have to correspond to the same object in the scene. So images with a large
number of tentative correspondences don’t necessarily have to depict the same objects
(see Figure 2.12). Therefore some sort of post-verification is often used to filter out

inconsistent matches.

2.4.1 Weak Geometrical Constraints

Semilocal constraints were proposed in [41] and used in [35]. Spatial consistency of a
match of keypoints is defined rather loosely by requiring that at least n out of the k
nearest features in the query image must correspond to the k nearest features in the
retrieved image. The best value for n was empirically set to be a half of k. In order to
increase the recognition rate even more, a geometric constraint is added. It requires the
mutual angles of the neighbouring features to be locally consistent (see Figure 2.13).

a database entry and a match
its p closest features

Figure 2.13 Semilocal geometrical verifications. In order to be verified, neighbouring
features of a match must correspond as well as their mutual angles. [34]

2.4.2 Hough Transform

Generalized Hough transform [42, 43| is a method in computer vision which uses voting
procedure to find the most probable model on data. Each candidate point votes for all
models which it is consistent with. These votes are accumulated in quantized
multidimensional array. Local maxima correspond to the most probable model parameters
(see Figure 2.14).

Hough transform as widely used technique as it is applicable on many different
problems and can handle high percentage of outliers. Its disadvantages may be possible
problems with quantization and that is impractical for high-dimensional models.
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X 0
Figure 2.14 Hough transform. Tested data points (left) and their votes (white) for models

in polar coordinates (right). The coordinates of the most supported model are clearly
distinguishable. [59]

2.4.3 RANSAC

Random sample consensus (RANSAC) [44] is a popular probabilistic and iterative
algorithm for robust model estimation. It randomly selects a minimal sample s from a set
of points § in order to create a hypothesis. Then it calculates an error function for each
data point in §, selects data which support the current hypothesis and computes score of
the hypothesis (see Figure 2.15). This procedure is repeated until stopping conditions are
met. The final outcome is the hypothesis which achieved the best score.

Probability that all points in the sample are inliers is

) M
Pgood = (T) = 1:.1 N_—] (2.29)

where N is size of the set §, I is number of inliers and m is size of the minimal sample. If

we want to have confidence ¢ that at least one of the samples contains only inliers, then

k
(1=Pyooa) <1-c (2.30)
where k is number of trials. This means that at least

log(1 —c¢)
- log(l — Pgood)

(2.31)

trials must be performed to achieve confidence ¢ that the true set of inliers was found.

RANSAC can handle even small fraction of inliers, although the number of
necessary trials grows polynomially with this fraction and exponentially with the size of
the minimal sample m. RANSAC is a very general robust estimation method, yet there
exist a lot of algorithms which improve some of its imperfections, e.g. Locally Optimized
RANSAC [45], DEGENSAC [46], PROSAC [47] or WaldSAC [48].
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Figure 2.15 RANSAC hypotheses. Two different hypotheses on the same data (black).
Hypothesis (blue) constructed from two sample points (red) and points which support this

hypothesis (green). [58]
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First, we will review the requirements on the system. To satisfy the specification and
requirements we have to make a choice of detector, descriptor, matching algorithm and
a method of final verification. We will first study state-of-the-art for components and

then propose their composition.

.
logotype class 1
ORB detector, keypoint verification . locality
. . X mutual keypoint -
trainin non-maxima suppression, by synthetic e sensitive
g . . verification .
images FREAK descriptor augmentation hashing
indexing | [H
TRAINING
RETRIEVAL v
er ORB detector, locality ) . )
i?na )e, non-maxima suppression, sensitive | Ju€Nng index with
9 FREAK descriptor hashing hashtables
Twitter

streaming API

shortlist . -
RANSAC of training thresholding, tentative

: cross-check correspondences

images

class of the best
corresponding
training image

no logo detected

Figure 3.1 Image retrieval for logo recognition. This flowchart shows the training as
well as the retrieval part of the algorithm. The rectangles represent data structures while the
ones with the rounded edges represent functions and processes. Individual parts of the
algorithm are further described in this chapter.

3.1 Requirements

Hundreds of millions images are shared on social media every day, however most of them
are not publicly accessible. We focus only on Twitter for which we estimated tens of
millions of daily images. We found out that at least two thirds of these images are
duplicates. There is also vast amount of spam and some images do not need to be checked
because some users do not have sufficient audience or come from unrelated geographical
region and so on. The final estimate are low millions of images to be checked per day, i.e.

dozens of images per second.

The number of queries is enormous and images which contain sought logotype
occur very rarely. We estimated the a priori probability that an image contain desired
logotype between 10” and 10™. Therefore near perfect precision is required otherwise false
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positives would outnumber true positives in the results. On the other hand, perfect recall
is not necessary since we are interested in observing changes in trends during campaigns
rather than aiming to retrieve all presented images with tracked logos.

There are no computational requirements on the offline stage of the algorithm.

3.2 Image Description

3.2.1 Feature Detection

Detector part of ORB algorithm was chosen for detecting the keypoints. According to the
measurements in Table 5.2, it is the fastest detector which provides scale invariance and
orientation estimation. It detects FAST corners across the Gaussian scale space and it
uses Harris response function to select the most stable features. The selection is performed
within each octave independently. Number of retrieved keypoints is proportional to the
size of the image in the particular level of the Gaussian pyramid. Let N; be the maximum
number of desired keypoints, L the number of levels of the Gaussian pyramid and sy its

scaling factor. Then, the number of keypoints in the [-th level is

1- 1 L
Sf 1
nm=Ne——F7 (-) - (3.1)
R
i
ORB implementation in OpenCV allows to set any factor for the first level of the Gaussian

pyramid, i.e. some of the images in the pyramid may be even larger than the original

image.

FAST keypoints are detected after finding an arc of pixels on a circular
neighbourhood which are either all brighter or all darker than the centre pixel by some
threshold. This procedure already divides the keypoints to two sets — either dark corners
on a bright background or dark corners on a dark background. Even though this is not
often mentioned in the literature, it semantically makes sense to treat these two sets of
keypoints separately. This mainly saves time during the matching phase when distances
of keypoints of different types are not computed as it is unlikely these two keypoints

correspond to the same object in the scene anyway.

3.2.2 Spatial Non-Maxima Suppression

Common feature detection phenomenon is that keypoints with the highest corner
responses may be found primarily in one or few regions in the picture, e.g. trees or richly
textured areas. This certainly decreases the descriptiveness of the keypoint set and more
uniform distribution is desired. Adaptive non-maxima suppression which solves this
problem was proposed in [49]. Keypoints are sorted in descending order according to their
corner responses and they are iteratively added to a set of better distributed keypoints.
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At the time when a keypoint is added to this set, remaining surrounding keypoints within
a certain radius are checked. If their corner response is smaller by some factor than the
corner response of the currently added keypoint, they are removed from the list of
candidate keypoints and they cannot be added to the final set anymore.

This is a functional technique, however it requires some computation since k-NN
search needs to be performed in order to find surrounding keypoints. Any unnecessary
computation is undesirable, so slightly different approach is proposed. Rather than
scanning the neighbourhood of each keypoint, a grid over the image is constructed.
Keypoints are again added one by one according to their corner responses. There is a
limit k., of maximum number of keypoints in every grid cell. When this limit is reached,
no more keypoints can be added to the particular cell. Since the sizes of the query images
may be diametrically different, we suggest to specify the maximum number of retrieved
keypoints for the whole image N; with respect to the size of the picture, i.e.

Ny = Nyppy -1y 1 - 107° (3.2)

where Nyp, is the number of desired keypoint by one megapixel, n,. is the number of rows

of the image and n, is the number of its columns.

Figure 3.2 Non-maxima suppression. No keypoint (red) covers the HP logo after using
standard ORB detector (left). Using spatial non-maxima suppression distributes the
keypoints more uniformly (right).

We want the grids cells to be squarish and to have the same size. To achieve both

of these properties, the size of the cells is ¢, X ¢, pixels where

Cr =
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Figure 3.2 shows how spatial non-maxima suppression helps to distribute the
keypoints more uniformly and to find keypoints on logos with lower contrast.

3.2.3 Feature Description

FREAK descriptor algorithm was used to obtain the feature vectors. It performed very
well in the tests (see Table 5.1) and it also provides orientation estimation. As it is
described in [18], 512 bits it the FREAK descriptor are somewhat ordered from coarse to
fine. So it is possible to shorten the length of the descriptor in order to speed up the
matching process when looking for the fine correspondences is not necessary. Shortened
feature vectors of lengths 256 and 384 bits along with the full length vectors of 512 bits
were used in the experiments. Matching time is proportional to the lengths of the
descriptors and shorter descriptors results in faster matching. However, shortening of the
descriptors also leads to slightly worse recall. Three-quarter 384-bit-long descriptors were
finally selected as they performed the best trade-off between speed and recall.

3.2.3.1 Colour Description

Since logotypes usually have their distinctive colours, we attempted to add this
information to the descriptor. RGB intensities were not used directly due to their
susceptibility to illumination shifts. Patches were first converted to the HSV colour space.
Pixel values of the hue channel were weighted by their saturation and quantized to a
histogram h. of length N. See Figure 3.3 for examples of shapes of hue histograms for
different patches. The new colour feature vector F, was constructed as

E = Z 2°T[h.(a)] (35)

0<a<N

where

1 1fhc(a) = thc (3 6)
0 otherwise ’

Tlh(a)] = {

where th, is empirically set threshold. Colour feature vectors F. were then appended to
the original FREAK descriptors.

Even though additional colour information in the descriptors helped to detect
some logos which were not retrieved before, it had the opposite effect on many others.
Furthermore, some logos appear in a broad variety of colours (typically clothing
companies but even some more) so each version need to be represented in the database.
After all, using the colour information did not improved the overall accuracy so it was
not worth the additional computation and it was not used.
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Figure 3.3 Weighted hue histograms. Different patches are shown on the left and their
hue histograms are shown on the right. Black lines show the threshold th.. Note that patch
without any dominant colour has subsequently empty colour feature vector F. (bottom).
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3.3 Preprocessing of Training Images

There is no time constraint on the offline training stage of the algorithm, so more precise
and thus more time consuming operations may be used to obtain the best quality features.
To filter out unstable keypoints with low repeatability from the training set, an algorithm
using synthetic augmentation of training images and mutual keypoint verifications is
proposed. It is partially inspired by the synthetic database augmentation used in [21].

Algorithm 3.1 Synthetic image augmentation for keypoint filtering

Input: Image I, set of projection matrices P.
Output: Set of transformed images and set of sets of their keypoints.
projectedImages < {1}
for each P in @
I, + TRANSFORM-IMAGE(LP)
projectedImages < APPEND(I,)
end for

projectedKeypointsSet < @

© 00 J O Ut = W NN

for each image in projectedimages
keypoints < FIND-KEYPOINTS(image)
projectedKeypointsSet < APPEND(keypoints)

[
N = O

end for
filteredKeypointsSet < @
for each keypoints in projectedKeypointsSet
filteredKeypoints +— @
P < GET-TRANSFORM (keypoints)
for each k in keypoints
ky + INVERSE-TRANSFORM(k,P)
z+ 0

DD = = e = e e
O O 0 N Oy Ut s Ww

for each differentKeypoints in projectedKeypointsSet \ keypoints
Q@ <+ GET-TRANSFORM(differentKeypoints)
for each & in differentKeypoints
hy + INVERSE-TRANSFORM(h, Q)
if DISTANCE(ky,h,) < thy and SAME-SCALE(k;,h,)
24— z+1
end if

end for

N NN NN NN
~ O Ut =~ W N =

end for
if 2z > kf
filteredKeypoints + APPEND(k)
end if
32 end for
33 filteredK eypointsSet + APPEND(filteredKeypoints)
34 end for

35 return projectedImages, filteredKeypointsSet

W W NN
= o © o
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Figure 3.4 Synthetic augmentation. The training image is shrinked and skewed in both
z- and y-direction.

Four different trans formations were used to augment the training images. Effects of these
transformations can be seen in Figure 3.4.

Let a by the scaling factor. The transformation matrices are Sy(a), Sy (a), Ky (a)
and K, (a), where S, (a) shrinks the image in x-direction by factor @ and K, (a) skews the
image along the x-axis and rotates it appropriately. Elements of the transformations
matrices look as follows:

1 0 0] (@ +1)> a?—-1 0]
Sx(@)=10 a 0 KJl(a)=|a2-1 (a + 1)2 01
0 0 +Val L0 0 4a (57)
@ 0 0] (a+1)? 1—a? 0]
Sy(a) =(0 1 0| Ky(a) =l 1-a? (a+ 1)2 0
0 +al L0 0 4a

The design of the transformation matrices ensures preservation of area of the images and
thus also the area of the local features. Therefore the local features within the same octave
can be directly compared without any further conversion of their scales. See Figure 3.5
for visualisation of shapes of warped local features.

The algorithm obtains new images by projecting the original image using the
transformation matrices. ORB keypoints are located in each image independently. Each
keypoint of each image is compared with all the other keypoints of the other images which
were found within the same octave. The keypoint is preserved only if there is at least k¢
images which contain spatially corresponding keypoints, i.e. the distance between the
tested keypoint and some keypoint from another image is lower than threshold thy. Of

course, to measure distances between keypoints from different images, the coordinates
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must be projected to the same basis using the inverses of the corresponding

transformation matrices. For more precise description see Algorithm 3.1.

Threshold thy was set to 1 pixel to be sure only truly corresponding local features
are compared. The effect of choosing different ks can be seen in Figure 5.2. ky = 1 showed
to be adequate to filter out most of the undesired keypoints and simultaneously maintain
the sufficient number of the filtered ones. Unlike the synthetic database augmentation in
[21], new synthetic images serve only for the filtering of the keypoints and they are not
add to the training set. Adding these similar images to the database resulted in slowing
down the retrieval without any noticeable increase of recall.

The previous algorithm certainly filters out keypoints with low repeatability from
the training images, however it may still preserve keypoints which do not belong to the
local features of the logo, e.g. because of noise or some unrelated texture which is also

Algorithm 3.2 Keypoint filtering using multiple images of the same logotype

Input: Set of sets of keypoints K of images of the same logotype.
Output: Set of sets of filtered keypoints K.

occurrences < @

for each keypointSet in K

end for
for i+ 1toX
for j < i+1 to X
matches < FIND-CLOSEST-MATCHES(K (i), K (j))
10 H + RANSAC(matches)
11 inliers + FIND-INLIERS(matches,H)
12 for each {keypointld,keypointsid;} in inliers

1
2
3
4
5 occurrences < append vector of zeros of size of keypointSet
6
7
8
9

13 occurrences|i||keypointld;] < occurrences|i|[keypointld;] + 1
14 occurrences|j||keypointld;] < occurrences|j|[keypointld;] + 1
15 end for

16 end for

17 end for

18 Kf 0

19 for ¢« 1 to |K|

20 filteredKeypointSet + @

21 occurrenceVector = occurrences(i)

22 keypointSet = K (i)

23 for j «+ 1 to |keypointSet|

24 if occurrenceVector(j) = thy,

25 filteredKeypointSet + APPEND(keypointSet(5))
26 end if

27 end for

28 Ky « APPEND(filteredKeypointSet)

29 end for

30 return ?Cf
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Figure 3.5 Transformation of local features. Area of the original local feature is shown
in black. Shapes of new local features obtained by the synthetic augmentation are shown in
colours. Each colour correspond to one projection. Note that the local features are warped
however the area remains consistent.

presented in the image. Another way to filter out keypoints is to use other images of the
same logotype. The method described in Algorithm 3.2 uses linear-search algorithm to
find correspondences of keypoints with the closest descriptors in a pair of images and then
a homography is found using RANSAC. This is done for every pair of images and the
keypoints which did not figure as inliers at least th;, times are removed (see Figure 3.6).

The purpose of this step is not to find precise transformations between the training
images. The purpose is to filter out unrelated local features and the transformations serve
only to verify the spatial correspondences. Therefore, the constraints on RANSAC inliers
may be rather loose. Threshold thp ysac Was set to 8 pixels, i.e. a match was considered
as an inlier if the spatial difference between a keypoint from the first image and a
projected keypoint from the second image was smaller than 8 pixels.

%1 j
T
e i

Figure 3.6 Mutual verification of keypoints. Black arrows represent geometrically
verified correspondences of keypoints. With th;, = 2, red keypoints will be filtered out and
only green ones will stay. Notice that a keypoint may be filtered out whereas its corresponding
keypoint remains.
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3.4 Feature matching

Fast retrieval of the nearest neighbours of keypoints of query images is the crucial part
of the application. Linear search which would find the exact nearest neighbours is not
applicable due to its inefficiency. Much more effective approximate nearest neighbour
methods are sufficient in this case. Multi-probe locality sensitive hashing was chosen for
the nearest neighbour retrieval since it has decent performance and works well for the
Hamming distance measure unlike some other nearest neighbour algorithms.
Recall /speedup trade-off of the multi-probe LSH is shown in Figure 5.3. Multi-probe LSH
with 15 hashing tables, 29-bit-long hashes and 1-step perturbation vectors is used for all
further measurements as it was the fastest configuration with 60% recall for 5-NN and
with 50% recall for 10-NN.

Let Q be a set of query images, B a set tested brands and R a set of training
images.

R={r’1beB,1<j<n,} (3.8)

where r]-b

denoted kjb. Analogically, keypoints of a query image q € @ are denoted k.

is the j-th image out of n, images of a brand b. Keypoints of image rjb are

The retrieval Algorithm 3.3 works as follows. First of all, LSH hash values are
computed for all training keypoints. Then, for each keypoint from k, of query image q
are retrieved its nyyy nearest neighbours. These newly obtained matches correspond to
different training images, so each match is assigned to its appropriate image.

So far, there was no constrain on the Hamming distance between the matched
keypoints. The larger the distance is, the less likely the pair of keypoints correspond to
the same object in the scene (see Figure 3.9). That is why all matches which have the
Hamming distance larger than a threshold thygmm are filtered out.

There may still be an enormous number of matches between some pairs of images
although most of them are most likely false positives. In theory, RANSAC, which we use
for geometrical verification, can handle even a large portion of outliers, however at the
cost of performing more trials and thus substantially slowing down the computation. Also,
there is often a case that several keypoints from one image correspond to a single keypoint
in the second image. This is obviously wrong since only one of these matches can be true
positive. Moreover, geometrical verification by estimating spatial transformation between
images may fail as the projection of the first image to the second one degenerates to a
single point. Filtering according to the ratio between the closest and the second closest
match used by Lowe [31, 32| is not sufficiently applicable for the Hamming distance. We
rather use mutual nearestness of the keypoints, another widely used method to obtain
consistent matches. A match stays in the set of tentative correspondences only if the
keypoint from the first image is the closest one to the keypoint from the second image
and vice versa. We found out this condition was too restrictive for some pairs of images
with smaller number of correspondences, therefore we loosened this condition by allowing
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even the second closest matches to be satisfactory. An important part of this step is that

no additional keypoint distances are computed, i.e. only the distances computed during

the multi-probe LSH retrieval are used.

Even though RANSAC is generally considered as a fast method of geometrical

verification, it would be overwhelming to perform it for every training image. Only the

kpest most promising images are selected. A natural way to determine the best candidates

is by the number of their tentative correspondences. However, images with a large number

of keypoints have higher probability of finding incorrect random matches which may

easily overweight true matches of other images with not so many keypoints. Weighting

the number of correspondences by the number image keypoints led to the opposite

Algorithm 3.3 Brand recognition

1
2
3
4
S
6
7
8
9

10
11

12

13
14
15
16

17

18
19
20
21
22
23
24
25
26
27
28
29
30

Input: Set of training image keypoints R and query image keypoints q.
Output: Detected brand b.
Offline stage:

TRAIN-LSH(R)

Online stage:

knnMatches + FIND-KNN-MATCHES-BY-LSH( g,y )

{m¥, ..., mp

Jmpl  mi%, ., mp™ ) ASSIGN-MATCHES-TO-TRAIN-IMAGES (knnMatches)
1 bm

scores < @

b; . by by by bm
for m;*' in {m; R L ,...,mnbm}

m;" « KEEP-CLOSE-MATCHES(M;" thyqmm)

b;

m;" « CROSS-CHECK(m,", q)

b; bi| | bi|
s |m|/JIn

scores APPEND(s].b")
end for
bestInliers < @

b; .
for s;* in FIND-BEST-SCORES(scores,Kpest)

H « RANSAC(m)")
inliers < FlND—INLlERS(m}I?i,H)
if |inliers| > thgyce
return b;
else if |inliers| > |bestInliers|
b « b;
bestInliers < inliers
end if
end for
if bestInliers > thyy
return b
else

return none
end if
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problem, i.e. images with less keypoints were favoured. This happened because the
differences among the numbers of keypoints of training images were up to two orders of
magnitude from tens to thousands of keypoints. This means that some images needed up
to hundred less tentative correspondences to overtake the others. Finally, a score obtained
by dividing the number of tentative correspondences by the square root of the number of
keypoints appeared to be the best solution which favoured neither the images with a lot
of keypoints nor the images with not so many of them.

A short list of length kj,g is created. Geometrical verification is done on the most
promising image first. If the number of its inliers is larger than thg,.., its brand is
immediately returned as a successful result of the retrieval. If not, the verification is
successively performed on the rest of the shortlist to the one with the lowest score. If
none of the candidates exceeded thg,.., the result is the brand of an image with the
largest number of inliers which is bigger thy,;,. If no candidate reached th,,;,, no logo is
detected.

i Grande g

Figure 3.7 Deformed projection. Training image (left), query image (middle left), warped
training image according to the transformation found without checking of the diagonals (middle
right) and warped training image according to the transformation found after the diagonal
checking (right).

3.4.1 Geometrical verification

As it was said earlier, RANSAC is used to perform the geometrical verification.
Images vary in scales, rotations and viewpoints, however logos remain more or less planar
(see Figure 4.2). Homography estimation is an appropriate way to determine geometrical
transformation in this case. Homography is a projective transformation which needs a
sample of 4 pairs of points to be unambiguously defined. The projection of a point with
coordinates [x;, y;] is computed as

!

Xi X
aulyi| =] (5
1 1

where [x;,y;] are the projected coordinates, H is 3 X 3 real matrix with rank equal to 3
and A; is a scaling factor.
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OpenCV version of homography estimation sometimes returned very odd results.
Moreover, it obligatorily performs refinement of the projection using the Levenberg-
Marquardt method [50] which slows down the computation. So slightly modified version
of RANSAC was newly implemented. The candidate hypothesis is still determined by 4
randomly selected pairs of keypoints. However, before projecting the keypoints,
computing their distances from their expected positions and counting up the inliers, two
simple tests are performed. Only the corner points of the training image are projected by
the homography H. Projection of the training image to the query image is expected to be
close to the rectangular shape and not too heavily deformed (see Figure 3.7). The level
of deformation is simply computed as a ratio of the diagonals. More formally, let A, B, C
and D be the corner points of the training image and A’, B’, C' and D' be their projections
according to the homography H. H is admitted only if

Lo_aci o (3.10)
BEEE e |

thdiag

Threshold thg;qg was empirically set to 1,5.

GUINNESS

UGHT

GUINNESS

Figure 3.8 Chirality. Training image (left), query image (middle left), warped training
image according to the transformation found by OpenCV (middle right) and warped training
image according to the transformation found after the chirality checking (right).

There is also another phenomenon known as chirality. It relates to the
reconstruction of positions of cameras in epipolar geometry. There are situations when
the equations for the fundamental matrix are satisfied but some points in the 3D space
may be situated behind the camera while others are in front of it which obviously does
not correspond to the real scene. As a result, projected image is cut at infinity (see Figure
3.8). The diagonal test as it is computed in the previous step does not detect this case
because positions of the corner points may look fine. The solution of this problem is
straightforward — scaling factors A4, A5, 4c and Apmust all have the same sign which
means they are either all in front of the camera or all behind it. The case when all
projections are behind the camera is actually feasible here. It only means that the camera
is oriented to the opposite direction and since we do not need neither the camera position
nor its orientation, this case may be admitted here.

Keypoints projections are computed only if both of these conditions are satisfied.
Because deformed and improbable homographies are skipped right away, the
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computational time of RANSAC speeded up twice. A match m; consisting of training

point p} and query point pf is considered as an inlier if

q HL

D, ) < thy, (3.11)

where th;, is a threshold. The value of th;, affects the number of inlier points (see Figure
3.9) and thus the speed of the algorithm (see Equations 2.23 and 2.25). We can allow to
have rather big th, since the purpose of this step is to filter out spatially inconsistent
matches and not to find the exact transformation between images unlike some other
computer vision applications where the exact estimate is crucial.
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Figure 3.9 Histograms of Hamming distances of inlier and outlier points after
using different RANSAC thresholds th;,. Outliers heavily outnumber inliers if th;, is
too small and the constraints are too tight (top row). The smaller the Hamming distance is,
the more likely a match is an inlier (bottom row). These plots also give an insight into how
big reasonable values for thygmm should be.

3.5 Implementation

The application was implemented using the language C-++ and open source libraries
OpenCV 2.4.9 [51] and Boost 1.46.1 [52]. Multi-probe LSH part of the library was
imported from Fast Library for Approximate Nearest Neighbours (FLANN) [53].
Additional scripts for data manipulation were implemented in the language Python 2.7.

All source codes are available on the attached DVD.
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4.1 Flickr Dataset

FlickrLogos-32 [54] is a standard dataset for multi-class logo detection/recognition used
in [21, 55]. It is not publically accessible but it is available after requesting the authors.
It contains 70 instances for each of 32 logotypes as well as 6000 general non-logo images.
All of these images were downloaded from the photo sharing service Flickr. The classes
are Adidas, Aldi, Apple, Becks, BMW, Carlsberg, Chimay, Coca-Cola, Corona, DHL,
Erdinger, Esso, Fedex, Ferrari, Ford, Foster's, Google, Guinness, Heineken, HP, Milka,
Nvidia, Paulaner, Pepsi, Ritter Sport, Shell, Singha, Starbucks, Stella Artois, Texaco,
Tsingtao and UPS. The non-logo images were downloaded from Flickr with the queries
“building”, “nature”, “people” and “friends”. Visual summary of different logotypes can be
seen in Figure 4.1. Some images may contain several instances of the same logo. Images
were manually annotated, so the locations of logos are exactly known (see Figure 4.2).

The average size of an image is 0.71 MPx.

Figure 4.1 Flickr dataset. Examples of images of classes Foster, Milka and Esso.

Authors divided the dataset into three subsets. Training set contains 10 images
of each logo. Validation and test set each contain 30 images of each logo and 3000 non-
logo images.

We will denote the training set Rg. 300 random non-logo pictures were randomly
selected from the validation set. Union of these non-logo pictures and the set Ry is be
denoted Qp. R is used as a training set and Qp as a test set in all the experiments
unless otherwise stated. Naturally, if a query g € Q was also presented in Rp, identical
image r € Rp was rejected from that particular search. Only the annotated areas were
used for detection of training keypoints.
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SINCE [ELE]

Figure 4.2 Pixel-level annotations. Original image (top left) and a mask of locations of
logos (top right). Only keypoints which lie in the coloured areas are used for training (bottom).

4.2 Twitter Dataset

A huge set of tweets was kindly provided by the Czech company Wikidi’. These tweets
were obtained by using the Twitter streaming API [56]. Thirty two streams, one for each
class name from the Flickr dataset, ran from July 31 to September 24™. The tweets were
obtained in the JSON text format and it contained information about the tweets, users’
profiles and their settings. This is a lot of data for each tweet and only small portion is
relevant for us. That is why the relevant attributes were saved to a tab-separated values
(TSV) files. They contain the date, time, text and URL of tweets, username,
corresponding keyword, followers count, the image URL and an indication whether the
tweet was a retweet. These TSV files can be found on the attached DVD, only retweet
entries had to be filtered out in order to fit the capacity of the disc.

The average image size is 0.48 MPx. Naturally, these images are not further

labelled or annotated in any way.

? http:/ /www.wikidi.cz/
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4.3 Oxford Dataset

Oxford dataset is a standard dataset used by Mikolajczyk [57] and many others. It
contains 8 scenes and 6 images for each of these scenes. The images have different zoom,
level of blurriness, rotation, viewpoint, illumination conditions and JPEG compression so
feature repeatability may be tested under different conditions. See Figure 4.3 for examples
of this dataset.

Figure 4.3 Oxford dataset. Examples of scenes from the Oxford dataset are shown here.
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If not otherwise stated, all experiments were implemented using OpenCV 2.4.9 API on a
machine with Linux Mint 17, Intel Core i7-4500U 1.8GHz, integrated Intel HD Graphics
4400, 8GB DDR3 RAM and SSD hard drive.

Oxford Flickr Other literature
dataset dataset

Morphological FAST-9 (s.s.) 0.018  0.010 0.005 [11]
detectors pAQT 9 (5.5, NMS) 0.023  0.013 0.006 [11]
FAST-9 (m.s.) 0.097  0.064 0.005 [11]

FAST-9 (m.s., NMS) 0.108  0.069 0.006 [11]

ORB 0.109  0.081 0.042 [12]

BRISK 0.187  0.148 0.034 [27]

SUSAN 0.080 [10] 0.034 [11]

Gradient DoG 0.208 [11] 0.781 [26]
detectors grpp 1.673  1.259 1.367 [42] 3.146 [27]
SURF 2128  1.781 0.234[26] 0.211 [27]

Harris 0.125 [10] 0.109 [11]

Hessian 1.758 [42]

Affine MSER 0.893  0.732 1.289 [43]
detectors preggian Affine 5.332 [43]
Harris Affine 2.793 [43] 70.313 [42]

Harris Affine Region 23.438 [42]

Table 5.2 Detector times. All times are normalized to s/MPx. Abbreviation s.s. denotes
single scale, m.s. multi scale and NMS non-maxima suppression. Image dataset and Flickr
dataset are further described in Chapter 4. Processing times cited from other sources may vary
due to the different implementation, settings and/or processing power. Affine detectors are
shown only for completeness even though they were never considered for this application due
to their insufficient speed.

Oxford Flickr Other literature
dataset dataset

Binary ORB 0.083  0.082
descriptors pRygK 0.027  0.026 0.031 [13] 0.021 [27]
FREAK 0.088  0.024 0.018 [13]
Gradient SIFT 0425 0550 2.5 [13] 5.286 [27]
detectors guRp 0.798  0.826 1.4 [13] 0.389 [27]

Table 5.1 Descriptor times. All times are normalized to ms/keypoint. Image dataset and
Flickr dataset are further described in Chapter 4 and as in the Table 5.2, processing times
cited from other sources may vary due to the different implementation, settings and/or
processing power.
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First of all we tested the performance of available detectors (see Table 5.2) and
descriptors (see Table 5.1). We selected ORB as our detector since it is the fastest one
with scale and rotation invariance. FREAK was our choice of descriptor since it is also
the fastest one and showed better repeatability than the other ones in [18].
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Figure 5.1 Relation of Harris and FAST detectors. Plot on the left shows how many
keypoints with the strong Harris response satisfy the condition for FAST corners. Plot on the
right shows how many of the Harris keypoints correspond to the FAST keypoints after the
FAST non-maxima suppression. Both test were performed on images from the entire Oxford
dataset.

ORB detector looks for FAST corners in the scale space and it uses Harris response
to choose only the most stable keypoints. ORB detector is faster than Harris detector
since more time consuming Harris response is computed only on the pre-filtered subset
determined by FAST keypoints. FAST keypoints thus might be a good way to reduce
computational time of Harris detector. Figure 5.1 shows how many of Harris keypoints
also satisfy the condition for FAST corner. Interestingly, Harris local maxima satisfy this
condition less frequently then regions with strong Harris response in general. This may
be understood that FAST corners have wider regions of cornerness than Harris corners.
Figure 5.1 also shows how much Harris response only little correlate with FAST response
(Equation 2.7) which is used for non-maxima suppression of FAST keypoints.

Synthetic augmentation and verification of keypoints of the training images
proved to remain only the keypoints with high repeatability. See Figure 5.2 for histograms
of how many keypoints remained after using different parameters ks. Interestingly, there
were some images which lost four fifths of their keypoints even with ky = 1. This setting,
ks =1, was also used for the rest of the experiments since bigger values decreased the

number of keypoints too drastically.

Multi-probe LSH is one of the key elements of the algorithm. The number of hash
tables, the length of hash keys and the multi-probe level affect the time and recall of the
retrieval. Figure 5.3 also shows that recall decreases for further matches. Multi-probe LSH
with 15 hashing tables, 29-bit-long hashes and 1-step perturbation vectors is used for all
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Figure 5.2 Histogram of what portion of keypoints remained after the synthetic
augmentation. The synthetic augmentation verification with different kr was used for all
training images from the Flickr dataset (see Chapter 4.1). This chart shows three histograms
of how many keypoints remained. The bigger k; is, the more noticeable the filtering is.
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further measurements as it was the fastest configuration with 60% recall for 5-NN and
with 50% recall for 10-NN.

There have been introduced some improvements to speedup the retrieval process
and also relatively many parameters. Different configurations were tested on the Flickr
dataset and evaluated. While some of the configurations perform similarly, some perform
distinctly worse at both retrieval time and recall. Performance of the best ones can be
seen in Figure 5.4. There is visible trade-off between the computational time and recall.
It depends on the particular application requirements which property is more preferred.
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Figure 5.3 Multi-probe LSH performance. Multi-probe LSH proves to be orders of
magnitude faster than the linear search, especially when size of the database M increases (left).
It performs the best for the closest matches and the recall decreases when trying to retrieve
further matches (right).
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There is a sharp decrease of recall once first false positives appear. That makes it
clear where to set the threshold th,,;, in order to separate the true and false positives.
Its optimal value is different for each configuration though.

Total retrieval time needed for the test set Q varied from 194 to 439 seconds which
is equivalent to 315 to 708 ms per image. Recall that these values are for a single thread
computation and a laptop with low-power optimized processor. Retrieval time of the same
tests but on a more powerful computer with Intel Xeon E5-2620 2.10 GHz CPU was
exactly twice faster. See Figure 5.6 for a visualization of the time consumption of the
particular steps of the algorithm.
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Figure 5.4 Performance on the Flickr dataset. Recall/time trade-off of different
configurations (blue) is visualized on the left. The z-axis shows the total retrieval time for the
set Q. The red line connects the configurations which outperformed the others. On the right
are shown precision/recall curves of such configurations. See Table 5.3 for further description
of the configurations.

Time
Recall  Keypoint k-NN  Cross-check RANSAC
acquisition
Configuration 1 69.1 110.3  235.0 9.7 84.9
Configuration 2 66.2 109.1 155.9 8.1 70.3
Configuration 3 57.9 106.9 78.0 8.3 61.3
Configuration 4 54.3 104.3 71.2 2.3 28.3
Configuration 5 48.7 104.4 72.5 1.0 16.6

Table 5.3 Performance of different configurations. Configuration 1 uses all steps
described in the Chapter 3 except any pre-filtering of training keypoints. It uses 64-byte long
descriptors. Configuration 2 also does not do any keypoint pre-filtering and it uses 48-byte-
long descriptor and strict stable matching when only the nearest neighbours are allowed (not
the second nearest). Configuration 3 is the same as Configuration 1, but it only uses 32-byte-
long descriptor. Configuration 4 is the same as Configuration 3, but it pre-filters training
keypoints by estimation of the mutual transformations. And finally, Configuration 5 is the
same as Configuration 1 except it performs both types of training keypoint pre-filtering.

The recall in Table 5.3 goes from 48.7% to 69.1%, but remember that we use
different test set than the authors of bundle min-hashing. When we used Configuration 2
and the same datasets as in [21], we obtained 100% precision and 47.3% recall.

47



5 Experiments

Image loading

ORB detector
Spatial NMS
Keypoint separation
FREAK descriptor
LSH k-NN
Cross-check
RANSAC

Figure 5.6 Distribution of time consumption. Configuration 2 was used. Multi-probe
LSH and RANSAC are the two most time consumptive steps. Keypoint separation to dark
and bright keypoints is also non-negligible even though it is only division of one set to two. It
is because OpenCV does not provide polarity of keypoints and re-construction of Gaussian
pyramid is needed for their estimation. This would be most likely corrected in the future work
by changing the source code of OpenCV.

Even though overall recall is satisfactory for all the configurations, it is important
to break down the results according to the individual logo classes. As can be seen in
Figure 5.5, values of recall may differ a lot for different classes. Upon closer inspection
we found out that some of the logotypes have worse retrieval rate because they have less
local features. Insufficient number of local features makes matching less robust to the

viewpoint and illumination changes among the images. This is partially caused by using
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Figure 5.5 Recall of different brands. The variance of recall is large depending on the
presented logo. Success rate of the retrieval is dependent on the number of keypoints. Classes
which often have less keypoints are more prone to the imperfections in images.
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the corner detector even for rounded logotypes such as Apple, Pepsi or BMW. Some logos
appear in several different variations (Adidas, Nvidia) which also makes them harder to
match.

[ Ay ey O O L O i

ranking in shortlist

o o oo oo oo o oo o o o o o o o oo oo o o o oo o o

false negatives

Figure 5.7 Analysis of false negatives. Each of the 71 columns corresponds to one false
negative query image from the Flickr dataset. The rows indicate classes of first five images
from the final shortlist after the spatial verification. The black fields indicate where query and
trainine classes were the same.

We also analysed members of shortlists for all false negative cases to get a better
idea what happens during re-ranking of the shortlist. As it can be seen in Figure 5.7, only
small portion of ten to fifteen rejected images actually had chance to be retrieved. The
other ones did not have any member of the true class in their shortlist so they could not
be correctly match. This means that lower recall is not fault in spatial verification.

Twitter dataset was used for the final experiment (Figure 5.8). Images in this
dataset are smaller than the ones in the Flickr dataset and logos usually occupy smaller
area of the picture. That is why the result is noticeably worse. However, even recall about
20% is sufficient for making an analysis of trends in data.

0.9 \
0.8 \

0.7 \
0.6 \
05 1

0.4
0

Precision

0.05 0.1 0.15 0.2 0.25 0.3
Recall

Figure 5.8 Performance on the Twitter dataset. Precision/recall curve (blue) was
obtained using Configuration 2. As for the Flickr dataset, the curve steeply falls after the first
false positives appear.

49



5 Experiments

50



6 Conclusion

Rapid development of social media analysis is a recent trend. While natural language
processing and analysis of interactions among users are widely used and developed fields,
understanding and interpretation of shared images in the social media domain are still at
their beginning. Due to the huge volume and variety of the images, it is certainly a

challenging task which requires novel approaches.

A new end-to-end solution for the fast detection of objects of interest from an
unknown view in rapidly changing large collections of data was proposed based on the
reviewed state-of-the-art methods. In addition to the used state-of-the-art methods for
detection, description and matching, we introduces several improvements — fast non-
maxima suppression of keypoints, pre-filtering of training keypoints by synthetic
augmentation and by mutual verification of images within the same class and improved
RANSAC which counts support only for the relevant hypotheses.

The system is supposed to process millions of images daily, so a great emphasis
was put on its speed. The retrieval time varies according to resolution and complexity of
the image. The average retrieval time was less than one second for the Flickr dataset on
a low-power processor. Using more powerful server processor exactly doubled the speed.
Images downloaded from Twitter are typically smaller and less complex. That is why the
retrieval time of images from Twitter about twice faster. This means that a single server
machine with multiple processing cores would be sufficient for Twitter monitoring if
multithread support was implemented.

We are able to achieve both high precision and satisfactory retrieval time but our
recall 47% on the test set from the Flickr dataset is noticeably worse than 83% achieved
by bundle min-hashing. Differences are in every step of the process so it is hard to tell
which part causes this decrease of recall. The bundle min-hashing paper does not mention
the overall retrieval time so it is possible that its retrieval time would not be sufficient
for the given requirements.

Our other contribution is that we obtained a sample of 5 million tweets with
images from Twitter. It take up 400 GB of storage nevertheless we provide text files with
URL of the images on the attached DVD so it can be used for future research. We
achieved 99% precision and 18.3% recall which should still be sufficient for monitoring of
trends how much people share images with given logos.

We are aware of limitations of the algorithm. Rounded or very simple logos are
not suitable for our approach because of the lack of detected keypoints. Repetitive
structures within a logo may results in incorrect matching of the keypoints. We also did

not take care of special cases when there are multiple logos in one image.

For the future work, we would suggest modifying the source code of OpenCV for
efficient calculation of polarity of FAST keypoints and parallelization of the algorithm
which has not been implemented yet and which would be necessary for the real life
application. Further research can be done on the approximate nearest neighbour
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algorithm as well as on the use of colour which was not beneficial for us. And finally,
detection of multiple classes in one picture would be a useful feature for the marketers.
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A. Examples of results

Images on the right are the query images from the Flickr dataset. On the left are the best
matching images from the database. The green boxes show the spatial transformation of
the training image and the multi-coloured lines show spatially verified correspondences.
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Content of the attached DVD

src/ # the source code of the algorithm
thesis/ # this thesis in pdf file
twitter dataset/ # dataset of 5M tweets
o data/ # tsv files with the tweets
o src/ # scripts for downloading the images
utils/ # additional scripts
o annotations creator/ # tool for marking the positions of logos
o pics2tweets/ # tool which matches image results back to

the coresponding tweets
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